Human First . Retour du Web Summit
J1 du Web Summit : « Human First »
7 novembre 2015
kelbillet yann raoul, entrepreneurs
[Aventures d’Entrepreneurs] Yann Raoul, fondateur de KelBillet
19 novembre 2015
Voir tout

J2 du Web Summit : « Rise of the Machines »

data summit. Machine Learning

data summit. Machine Learning

La seconde journée du Web Summit s’est avérée plus compliquée que la première. Notre super programme, bien préparé à l’avance, a subi la déferlante des participants, arrivés en force ce 2e jour. Le track « Startup Society » a été pris d’assaut et nous avons finalement passé une seconde journée sous le signe des Data et du Machine Learning.

L’ère des plateformes proposant des services basés sur l’exploitation d’un graphe de données est arrivée et loin d’être à son apogée. Plus un service aujourd’hui qui ne mette à profit Intelligence Artificielle, Big Data et Machine Learning. Les plus impactants (LinkedIn, Facebook, Netflix, Pinterest, etc.) combinent généralement les 3 pour atteindre le degré ultime de personnalisation et offrir ainsi une expérience parfaite à l’utilisateur.

Ce type d’architecture se fraie aujourd’hui un chemin jusqu’à la proposition de valeur. Ainsi LinkedIn ne se définit plus comme une plateforme professionnelle de CVs en ligne, mais comme un outil pour explorer votre graphe relationnel.

Mais c’est quoi le Machine Learning ?

Michael Conover (Data Scientist chez LinkedIn) le définit comme le process au travers duquel les ordinateurs apprennent à apprendre en combinant 3 « ingrédients » de base :

  • de gigantesques jeux de données avec lesquels on les alimente,
  • les statistiques et les probabilités
  • et l’intelligence artificielle.

Il donne plusieurs exemples de domaines dans lesquels le Machine Learning a déjà investi notre quotidien numérique :

  • les filtres antispam (pour apprendre à reconnaître de plus en plus finement un spam d’un vrai email),
  • les moteurs de recherche (suggestions, apprentissage du langage naturel),
  • les assistants comme Siri ou Cortana… qui progressent à mesure qu’on les utilise
  • dans l’univers B2B le machine learning est au coeur de l’analyse prédictive utilisée par le monde bancaire et les assurances

Bonne nouvelle, cette intelligence des machines n’est plus l’apanage des startups, elle est aussi accessible aux PME. Michael Conover prend l’exemple d’une entreprise américaine d’entretien d’ascenceurs. Le déplacement d’un technicien pour changer une simple ampoule ou un bouton dans un ascenceur leur coûte en moyenne 600$. En surveillant la durée de vie moyenne des composants, cette entreprise a développé une plateforme de maintenance prédictive des composants. Lorsque l’un d’eux approche de sa fin de vie, il est remplacé, au cours d’une autre opération de maintenance. L’entreprise a ainsi mutualisé les déplacement, en a donc réduit le nombre et donc le coût.

Beaucoup d’autres entreprises utilisent déjà des mécanismes de Machine Learning tout simplement pour l’enrichissement automatique de nos données personnelles avec des metadata (ces informations que la machine va deviner ou déduire d’un contexte client et qu’elle va ajouter à notre profil).

Datasift clustering for diesel

Les clusters sémantiques de Datasift

Machine Learning et Big Data, les défis à relever

Tim Budden traite le plus grand dataset du monde, rien que ça :). Son produit Datasift permet d’agréger des flux de données (réseaux sociaux, news, blogs, etc), de les filtrer et de les analyser pour générer des « insights » : dégager des tendances, faciliter la normalisation, enrichir son dataset avec d’autres données temps réel et capturer des apprentissages sur ses propres données.

Pour lui, les services data-driven (pilotés par la donnée) font face aujourdhui à 3 défis
1. Le volume et la vélocité des données (1,2 milliards de personnes sur les réseaux sociaux qui postent quotidiennement)
2. Le langage naturel : ses langues, sa variété, ses synonymes et ses ambiguïtés
3. La vie privée (peut-on exploiter ces données en respectant la vie privée et l’anonymat des gens ?)

Datasift a fait de ce 3e point une priorité éthique de sa stratégie, mais d’autres sont beaucoup moins scrupuleux. Or ces défis sont encore plus cruciaux avec l’arrivée de la robotique et de l’Internet des Objets. Après « l’humail d’abord », le règne des machines commence… pour l’instant à notre service mais pour combien de temps encore ?

Comments are closed.

La lettre du Shift

La lettre du Shift

Pour recevoir notre lettre d'information qui parle d'innovation, de startups, d'entrepreneuriat, de créativité, d'agilité, de leadership, d'inbound marketing et de gif animés... ? Laissez votre email !

Merci ! Vous allez recevoir un email de confirmation, n'oubliez pas de cliquer sur le lien qu'il contient !

Partagez
Tweetez
Partagez